Merger in Production and Perception? Bilingual Discrimination of Spanish [ß] and [v]

Gabriella Licata, Annie Helms and Rachel Weiher University of California, Berkeley

Hispanic Linguistics Symposium 2019

Mergers of allophones

- Mergers of expansion: access to a range of allophonic production, rather than production and perception leaning towards one end of continuum or other (Labov, 1994)
- Partial contrast: contrast within a pair (i.e., la[β]an and la[v]an) is lessened due to some process of leveling or neutralization (Trubetzkoy, 1939).
- Reduces perceptual discrimination for speakers within their native phonology, esp. regarding allophones (Hume and Johnson, 2003).

Allophones of /b/ in Spanish

- Merger of /b/ and /v/ in the 15th century (Penny, 2002)
 - [b] or [β] (voiced bilabial approximant/fricative), positiondependent
- Descriptive account of Spanish /b/
 - [b], [β], or [v], position-dependent (Romero, Guerreiro, & Alviárez, 2008; Carvalho, 2006; Rao, 2014; Trovato, 2018; Hualde et al., 2010:420-421)
 - Younger people producing [v]
 - Language contact with English

Hypotheses

- **RQ1:** How are mergers in production and mergers in perception related?
- **Operationalization:** Extract acoustic measurements from production data and include them as IV in a model where DV is discrimination accuracy
- Hypothesis: A merger of expansion in production in United States Spanish is correlated to a merger of perception, or a weakening of discrimination, of [β] and [v] (corresponding to orthographic and <v>) in intervocalic position.

Hypotheses cont.

- **RQ2:** How does orthography (<v> versus) affect discrimination accuracy?
- Operationalization: Stimuli used in production and perception tasks will include an equal number of words spelled with <v> as words spelled with .
- **Hypothesis:** Because the merger of expansion is predicted to be most prevalent in words spelled with <v>, discrimination accuracy will be lower for words spelled with <v> than with .

Stimuli

- Controlled phonological context

 all instances of /β/ are posttonic and in intervocalic position
- Male, native-Spanish speaker read token words twice, producing [β] in one iteration & [v] in another
- 9-step continuum, with base token generated from midpoint, steps of [β]-[v] spliced onto base
- Concatenated, 4 iterations of token word divided into pairs

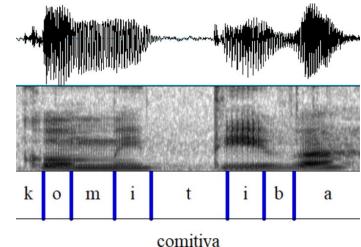
<v></v>	
cadáver	cabe
detective	caribe
comitiva	caníbal
lavan	graba
clave	casabe

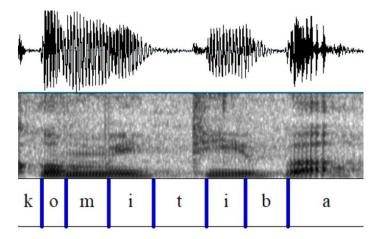
Participants & Procedure

- Two participant groups:
 - Early Spanish-English Bilinguals (simultaneous or childhood acquisition of English proficiency)
 - Late Spanish-English Bilinguals (acquisition of English at >18 years of age, born/raised in Spanish-dominant country)
- Experimental Procedure: 2 Tasks
 - **Reading Task**: participants read token words and fillers (to compare production with perception *prior to any priming from the perception task*)
 - **Discrimination Task**: Adapted roving 4I2AFC discrimination task (Gerrits & Schouten 2004)
 - 2 experiments of 120 trials each, plus practice trials

¿Cuál par tiene la diferencia?						
P1 〇	P2 〇					

Acoustic Analysis of Production Data


- TextGrids generated with Montreal Forced Aligner (McAuliffe et al. 2017) and Spanish dictionary (Morgan 2017); subsequently hand-corrected
- Acoustic measures of /b/ (Trovato, 2017; Mazzaro 2011)
 - Minimum intensity [β] > [v]
 - Duration [v] > [β]
 - Center of gravity $[\beta] > [v]$
- Z-Scores applied to intensity and cog measurements
- Duration of /b/ relative to duration of VbV segment
 - According to null hypothesis, duration of VbV segment for every word should be equal, regardless of orthography



Sample Production Data

100

- Lang. Profile: Late
- More [β]-like?
- Minimum Intensity: 56.21 dB
- Duration: 49.188 ms
- Rel. duration: 0.25
- Center of gravity: 3002.28 Hz
- Lang. Profile: Early
- More [v]-like?
- Minimum intensity: 62.58 dB
- Duration: 60.09 ms
- Rel. duration: 0.24
- Center of gravity: 2675.28 Hz

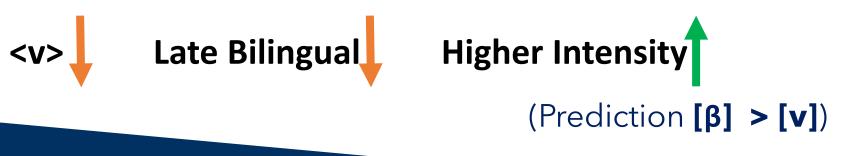
comitiva

Statistical Analysis

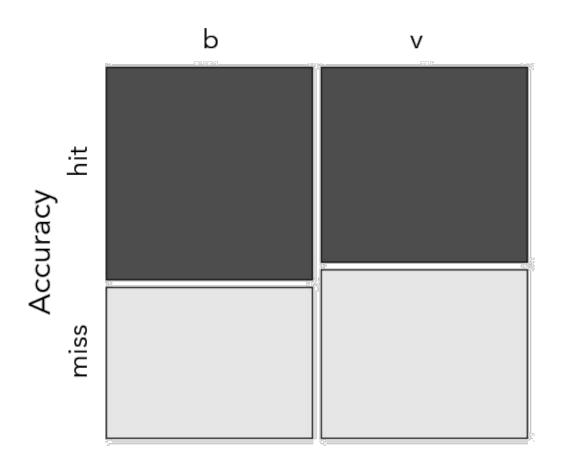
• **Mixed-effects logistic regression** in R (R Core Team 2018) *failed to converge*

Fixed-effects logistic regression:

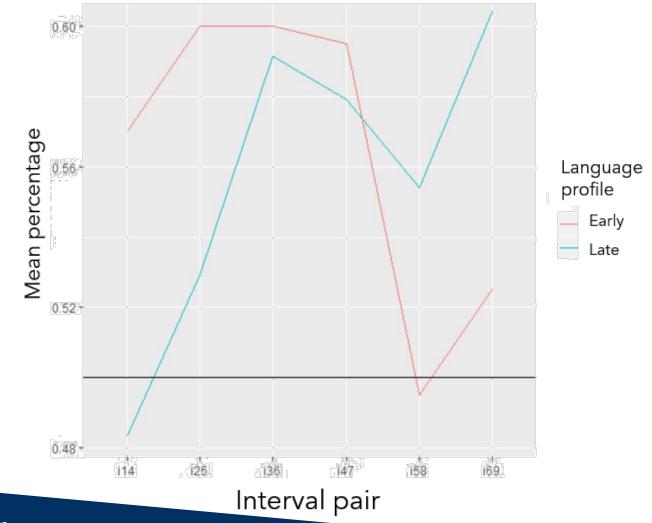
- 1. orthography + scale(intensity) * language profile * interval pair
- 2. orthography + duration * language profile * interval pair
- 3. orthography + scale(cog)* language profile * interval pair


Results - Intensity Model

Coefficients		Estimate	Std. Error	z value	Pr (> z)	Accuracy
(Intercept)		0.427031	0.152552	2.799	0.00512	60.52%
Orthography	<v></v>	-0.192114	0.079987	-2.402	0.01631	55.85%
Interval pair	2-5 3-6 4-7 5-8 6-9	0.058261 0.062047 0.103863 -0.344712 -0.227986	0.207069 0.207046 0.208928 0.205134 0.205252	0.281 0.300 0.497 -1.680 -1.111	0.77844 0.76442 0.61910 0.09287 0.26667	
Language Profile	Late	-0.420270	0.196747	-2.136	0.03267	50.17%
Intensity (z-score)		0.296622	0.148535	1.997	0.04583	53.26% (1 SD below mean) 67.34% (1 SD above mean)


Results - Intensity Model

Coefficients	Estimate	Std. Error	z value	Pr (> z)	Accuracy
(Intercept)	0.427031	0.152552	2.799	0.00512	60.52%
Orthography <v></v>	-0.192114	0.079987	-2.402	0.01631	55.85%
Language Profile Late	-0.420270	0.196747	-2.136	0.03267	50.17%
Intensity (z-score)	0.296622	0.148535	1.997	0.04583	53.26% (1 SD below mean) 67.34% (1 SD above mean)


Figure 1: Response by orthography

Orthography

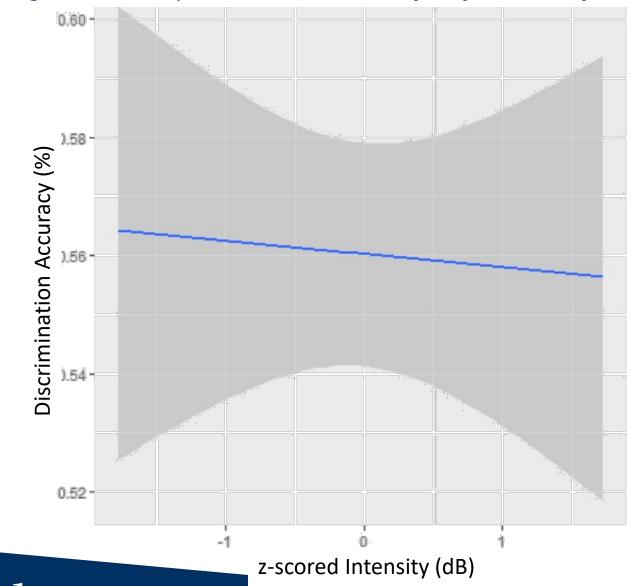
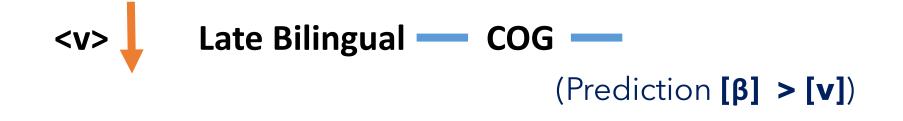


Figure 2: Interval Pair*Language Profile

Figure 3: Response (% Accuracy) by Intensity (dB)


Results - COG Model

Coefficients		Estimate	Std. Error	z value	Pr (> z)	Accuracy
(Intercept)		0.33895	0.15308	2.214	0.02681	58.39%
Orthography	<v></v>	-0.19986	0.07933	-2.519	0.01176	53.47%
Interval pair	2-5 3-6 4-7 5-8 6-9	0.18192 0.21755 0.09923 -0.22449 -0.04392	0.21021 0.21175 0.20942 0.20810 0.21106	0.865 1.027 0.474 -1.079 -0.208	0.38680 0.30424 0.63561 0.28069 0.83517	
Language Profile	Late	-0.30284	0.19678	-1.539	0.12381	
Center of Gravity (z-score)		-0.27639	0.22228	-1.243	0.21370	

Results - COG Model

Coefficients		Estimate	Std. Error	z value	Pr (> z)	Accuracy
(Intercept)		0.33895	0.15308	2.214	0.02681	58.39%
Orthography	<v></v>	-0.19986	0.07933	-2.519	0.01176	53.47%


Results - Duration Model

Coefficients		Estimate	Std. Error	z value	Pr (> z)	Accuracy
(Intercept)		1.22324	0.58533	2.090	0.0366	77.26%
Orthography	<v></v>	-0.20206	0.07935	-2.546	0.0109	73.52%
Interval pair	2-5 3-6 4-7 5-8 6-9	-1.41125 -1.37236 -0.75088 -1.09370 -0.04392	0.82685 0.82644 0.82287 0.81577 0.21106	-1.484 -1.661 -0.913 -1.938 -0.208	0.1378 0.0968 0.3615 0.28069 0.0527	
Language Profile	Late	-0.44248	0.80376	-0.551	0.5820	
Relative Duration		-4.44367	2.99434	-1.484	0.1378	

Results - Duration Model

Coefficients		Estimate	Std. Error	z value	Pr (> z)	Accuracy
(Intercept)		1.22324	0.58533	2.090	0.0366	77.26%
Orthography <	v>	-0.20206	0.07935	-2.546	0.0109	73.52%

Discussion

RQ1:

- Language profile (early or late bilingual) has a significant effect on discrimination accuracy. Listeners (early bilinguals) can better perceive phones in their native inventory (Hume & Johnson, 2003)
- Intensity of /b/ segment in participant production is inversely correlated with discrimination accuracy. More [β]-like productions have greater perceptual accuracy → Merger of Expansion Theory (Hume & Johnson, 2003; Labov, 1994; Trubetzkoy, 1939)

RQ2:

• Orthography is a significant predictor for perceptual accuracy, where <v> corresponds to less perceptual accuracy than .

Additional results:

• From this data, intensity (dB) is the only metric that supports the prediction of a relationship between production and perception. COG and duration were not shown to be significant predictors of perceptual accuracy.

Future Considerations

- Statistical model
 - Collect more data so that mixed model can converge (accounts for speaker differences)
- Acoustic measures
 - Measurement of velocity of air flow in order to place productions on a continuum between fricatives and approximates (i.e. relative turbulence of air flow)
- Matched guise test
 - What attitudes do speakers have towards a gradient production of intervocalic /b/? Are different productions on the allophonic continuum more salient than others?
- Other production/perception studies
 - Do our predictions hold?

References

- Carvalho, A. M. (2006). Spanish (s) aspiration
 as a prestige marker on the Uruguayan-Brazilian border. Spanish in context, 3(1), 85-114.
- Gerrits, E., & Schouten, M. E. H. (2004). Categorical perception depends on the discrimination task. *Perception & psychophysics*, 66(3), 363-376.
- Hualde, J. I., Olarrea, A., Escobar, A. M., & Travis, C. E. (2010). Introducción a la lingüística hispánica. New York: Cambridge University Press.
- Hualde, J. I. (2013). Los sonidos del español: Spanish language edition. Cambridge University Press.
- Hume, E. & Johnson, K. (2003). The impact of partial phonological contrast on speech perception. In *Proceedings of the fifteenth international congress of phonetic sciences* (Vol. 2385).
- Kawahara, H., Morise, M., Takahashi, T., Nisimura, R., Irino, T., & Banno, H. (2008). TANDEM-STRAIGHT: A temporally stable power spectral representation for periodic signals and applications to interference-free spectrum, F0, and aperiodicity estimation. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 3933-3936. IEEE.

- Kuznetsova, A., Brockhoff, P.B., & Christensen, R.H.B. (2017). "ImerTest Package: Tests in Linear Mixed Effects Models." Journal of Statistical Software, 82(13), 1-26.
- Lenth, R.V. (2016). Least-Squares Means: The R Package Ismeans. Journal of Statistical Software, 69(1), 1-33.

•

•

- `McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M. & Sonderegger, M. (2017). Montreal Forced Aligner [Computer program], available at http://montrealcorpustools.github.io/Mont real-Forced-Aligner/.
- Morgan, J. (2017). Santiago Spanish Lexicon: A pronouncing dictionary for the Spanish language. Open Speech and Language Resource, available at <u>https://www.openslr.org/34/</u>.
- Ortega-Llebaria, M. (2003). Effects of Phonetic and Inventory Constraints in the Spirantization of Intervocalic Voiced Stops: Comparing two Different Measurements of Energy Change. *Stress*, 7(6), 5.
- Qualtrics, I. (2013). Qualtrics. Provo, UT, USA.
- R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.Rproject.org/

- Rao, R. (2014). On the status of the phoneme/b/in heritage speakers of Spanish. *Sintagma: revista de lingüística*, 37-54.
 - Romero, L., Guerreiro, Y., & Alviárez, L. (2008). Fricativas y aproximantes: Labiodentalización y refuerzo en el español de Maracaibo. *Opción*, 24(57), 58-73.
- Singmann, H., Bolker, B., Westfall, J. & Aust, F. (2019). afex: Analysis of Factorial Experiments. R package version 0.23-0. https://CRAN.Rproject.org/package=afex.
- Trovato, A. M. (2018). A sociophonetic analysis of contact Spanish in the United States: labiodentalization and labial consonant variation (Doctoral dissertation).
- Warren, P., Hay, J., & Thomas, B. (2007). The loci of sound change effects in recognition and perception. *Laboratory phonology*, 9(87-112).
- Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
- Wickham, H., François, R., Henry, L. & Müller, K. (2019). dplyr: A Grammar of Data Manipulation. R package version 0.8.0.1. https://CRAN.Rproject.org/package=dplyr

Acknowledgements

- Ernesto Gutiérrez Topete, Dr. Keith Johnson and Dr. Justin Davidson (University of California, Berkeley)
- Kaile Zhang (The Hong Kong Polytechnic University)
- The Language Variation & Change Working Group at UC Berkeley
- **Department of Linguistics** at UC Berkeley
- Our participants

