Utilizing density-controlled vowel space area to examine the role of language dominance in the acquisition of Spanish and English vowel reduction patterns

Annie Helms annie_helms@berkeley.edu

10th International Symposium on the Acquisition of Second Language Speech April 20, 2022 – University of Barcelona

Goals

- Motivate and explain method of calculating vowel space area using formant trajectories and local densities
- Apply to acquisition of L2 phonetics and phonology

- Interspeaker variation
 - L1 clear speech, talker characteristics (Bradlow et al. 1996; McCloy et al. 2012)
 - Bilingual vowel reduction, language profile (Menke & Face 2010; Ronquest 2013)

- Interspeaker variation
 - L1 clear speech, talker characteristics (Bradlow et al. 1996; McCloy et al. 2012)
 - Bilingual vowel reduction, language profile (Menke & Face 2010; Ronquest 2013)
- Intraspeaker variation
 - L1 clear speech, task type (Story & Bunton 2017)
 - Bilingual vowel reduction, task type (Ronquest 2016)

- Interspeaker variation
 - L1 clear speech, talker characteristics (Bradlow et al. 1996; McCloy et al. 2012)
 - Bilingual vowel reduction, language profile (Menke & Face 2010; Ronquest 2013)
 - L1/L2 vowel reduction, language dominance
- Intraspeaker variation
 - L1 clear speech, task type (Story & Bunton 2017)
 - Bilingual vowel reduction, task type (Ronquest 2016)

- Interspeaker variation
 - L1 clear speech, talker characteristics (Bradlow et al. 1996; McCloy et al. 2012)
 - Bilingual vowel reduction, language profile (Menke & Face 2010; Ronquest 2013)
 - L1/L2 vowel reduction, language dominance
- Intraspeaker variation
 - L1 clear speech, task type (Story & Bunton 2017)
 - Bilingual vowel reduction, task type (Ronquest 2016)
 - L1/L2 vowel reduction, task language

- Interspeaker variation
 - L1 clear speech, talker characteristics (Bradlow et al. 1996; McCloy et al. 2012)
 - Bilingual vowel reduction, language profile (Menke & Face 2010; Ronquest 2013)
 - L1/L2 vowel reduction, language dominance
- Intraspeaker variation
 - L1 clear speech, task type (Story & Bunton 2017)
 - Bilingual vowel reduction, task type (Konquest 2016)
 - L1/L2 vowel reduction, task language

- Interspeaker variation
 - L1 clear speech, talker characteristics (Bradlow et al. 1996; McCloy et al. 2012)
 - Bilingual vowel reduction, language profile (Menke & Face 2010; Ronquest 2013)
 - L1/L2 vowel reduction, language dominance
- Intraspeaker variation
 - L1 clear speech, task type (Story & Bunton 2017)
 - Bilingual vowel reduction, task type (Konquest 2016)
 - L1/L2 vowel reduction, task language

• Centralization of individual vowels in unstressed syllables (Elias et al. 2017; Menke & Face 2010; Ronquest 2013)

- Centralization of individual vowels in unstressed syllables (Elias et al. 2017; Menke & Face 2010; Ronquest 2013)
- Centralization of individual vowels after English code-switch (Elias et al. 2017)

- Centralization of individual vowels in unstressed syllables (Elias et al. 2017; Menke & Face 2010; Ronquest 2013)
- Centralization of individual vowels after English code-switch (Elias et al. 2017)
- Centralization of individual vowels in less-monitored speech (Ronquest 2016)

- Centralization of individual vowels in unstressed syllables (Elias et al. 2017; Menke & Face 2010; Ronquest 2013)
- Centralization of individual vowels after English code-switch (Elias et al. 2017)
- Centralization of individual vowels in less-monitored speech (Ronquest 2016)
- Decreased dispersion of vowels in less-monitored speech (Ronquest 2016)

- Centralization of individual vowels in unstressed syllables (Elias et al. 2017; Menke & Face 2010; Ronquest 2013)
- Centralization of individual vowels after English code-switch (Elias et al. 2017)
- Centralization of individual vowels in less-monitored speech (Ronquest 2016)
- Decreased dispersion of vowels in less-monitored speech (Ronquest 2016)
- Potential cross-linguistic influence from English

Vowel reduction

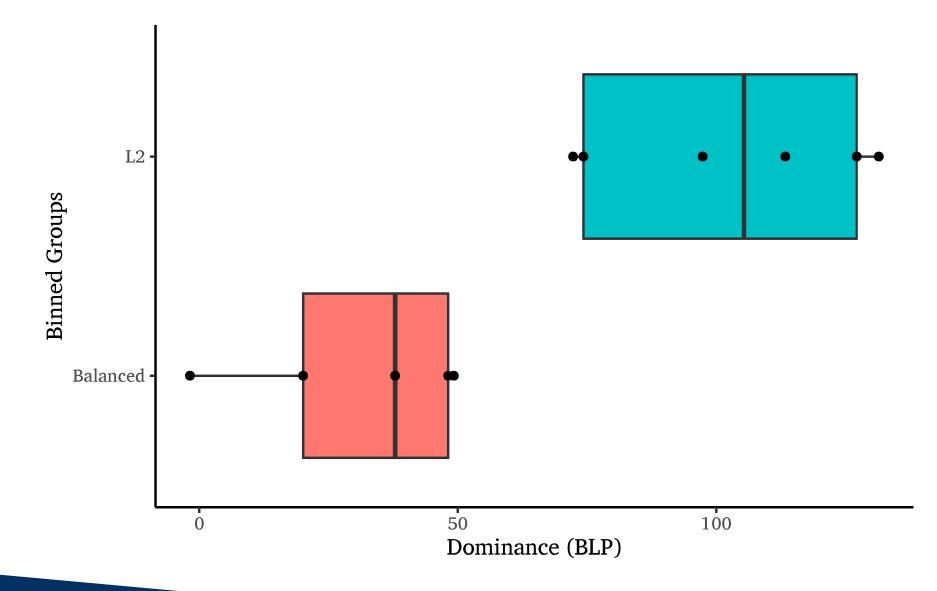
- Methodological issues:
 - Impressionistic coding (Varela 1992)
 - Measurements taken from one point during vowel production (Elias et al. 2017; Menke & Face 2010; Ronquest 2013, 2016)

Vowel reduction

- Methodological issues:
 - Impressionistic coding (Varela 1992)
 - Measurements taken from one point during vowel production (Elias et al. 2017; Menke & Face 2010; Ronquest 2013, 2016)
- Solution (Story & Bunton 2017)
 - Use entire formant trajectory
 - Weight regions of vowel space based on frequency of occurrence

Vowel reduction

- Methodological issues:
 - Impressionistic coding (Varela 1992)
 - Measurements taken from one point during vowel production (Elias et al. 2017; Menke & Face 2010; Ronquest 2013, 2016)
- Solution (Story & Bunton 2017)
 - Use entire formant trajectory
 - Weight regions of vowel space based on frequency of occurrence
- Novel application to L1/L2 vowel reduction
 - Interspeaker comparison: language dominance
 - Intraspeaker comparison: language of task



- Corpora
 - DIMEx100 for Spanish monolingual speakers (Mexico City)
 - CBAS for Spanish-English bilinguals (California Bay Area)

- Corpora
 - DIMEx100 for Spanish monolingual speakers (Mexico City)
 - CBAS for Spanish-English bilinguals (California Bay Area)
- Language dominance
 - Bilingual Language Profile (Birdsong et al. 2012)

- Corpora
 - DIMEx100 for Spanish monolingual speakers (Mexico City)
 - CBAS for Spanish-English bilinguals (California Bay Area)
- Language dominance
 - Bilingual Language Profile (Birdsong et al. 2012)

- Corpora
 - DIMEx100 for Spanish monolingual speakers (Mexico City)
 - CBAS for Spanish-English bilinguals (California Bay Area)
- Language dominance
 - Bilingual Language Profile (Birdsong et al. 2012)
- Lexical stress

- Corpora
 - DIMEx100 for Spanish monolingual speakers (Mexico City)
 - CBAS for Spanish-English bilinguals (California Bay Area)
- Language dominance
 - Bilingual Language Profile (Birdsong et al. 2012)
- Lexical stress
- Average vowel duration by speaker by language

Step-by-step methodology

1. F1 and F2 measurements at 5 ms intervals

- 2. Removal of outliers, median scaling
- 3. Creation of empty grids with discretized dimensions
- 4. Local density calculations with field-of-view
- 5. Scale density measures
- 6. Convex hull at specified scaled density \rightarrow DV
- 7. Creation of heat maps \rightarrow Visual

Step-by-step methodology

- 1. F1 and F2 measurements at 5 ms intervals
- 2. Removal of outliers, median scaling
- 3. Creation of empty grids with discretized dimensions
- 4. Local density calculations with field-of-view
- 5. Scale density measures
- 6. Convex hull at specified scaled density \rightarrow DV
- 7. Creation of heat maps \rightarrow Visual

Median scaling

•
$$F'_n = \frac{F_n - \widetilde{F_n}}{\widetilde{F_n}}, \ \widetilde{F_n} = median$$

Median scaling

•
$$F'_n = \frac{F_n - \widetilde{F_n}}{\widetilde{F_n}}, \ \widetilde{F_n} = median$$

- Transformed data:
 - Median = 0
 - Median dev. = 1

Step-by-step methodology

- 1. F1 and F2 measurements at 5 ms intervals
- 2. Removal of outliers, median scaling
- 3. Creation of empty grids with discretized dimensions
- 4. Local density calculations with field-of-view
- 5. Scale density measures
- 6. Convex hull at specified scaled density \rightarrow DV
- 7. Creation of heat maps \rightarrow Visual

Grid with discretized dimensions

• Simplified visual

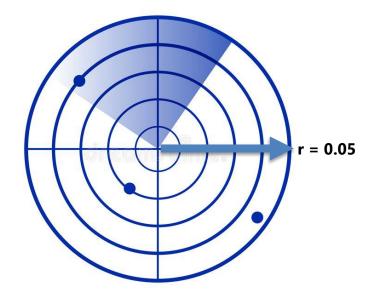
-												
0												
-												
I	-1			0							1	

Grid with discretized dimensions

• Simplified visual

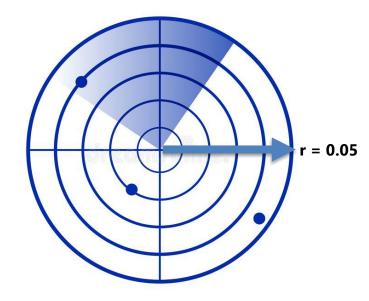
Grid with discretized dimensions

- Simplified visual
- Python:
 - 2-dimensional array with tuples of coordinates
 - Increments of 0.01
 - shape (201, 201)

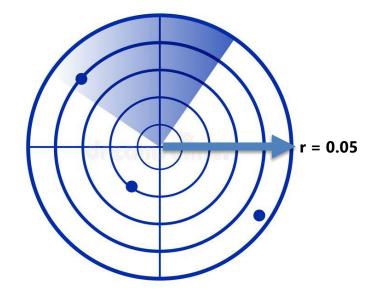


Step-by-step methodology

- 1. F1 and F2 measurements at 5 ms intervals
- 2. Removal of outliers, median scaling
- 3. Creation of empty grids with discretized dimensions
- 4. Local density calculations with field-of-view
- 5. Scale density measures
- 6. Convex hull at specified scaled density \rightarrow DV
- 7. Creation of heat maps \rightarrow Visual



- Each coordinate pair in grid
- Number of F1/F2 measurements in field-of-view of radius 0.05



- Each coordinate pair in grid
- Number of F1/F2 measurements in field-of-view of radius 0.05
- *Right:* local density of 3

- Each coordinate pair in grid
- Number of F1/F2 measurements in field-of-view of radius 0.05
- *Right*: local density of 3
- Local density stored in each grid point

5	9	23	32	33	0	0	0	0	0	0
3	28	30	47	0	0	0	0	0	0	0
7	1	3	0	0	0	0	0	0	0	0
14	21	20	25	27	38	40	0	0	0	0
18	29	0	0	0	0	0	0	0	0	0
12	13	15	0	0	0	0	0	0	0	0
20	26	27	11	25	38	40	0	0	0	0
32	33	34	0	0	0	0	0	0	0	0
29	18	0	0	0	0	0	0	0	0	0
5	9	8	24	0	0	0	0	0	0	0
28	16	17	0	0	0	0	0	0	0	0
18	29	0	0	0	0	0	0	0	0	0
25	26	20	11	0	0	0	0	0	0	0
7	1	3	0	0	0	0	0	0	0	0
33	32	9	5	23	0	0	0	0	0	0
28	16	17	0	0	0	0	0	0	0	0

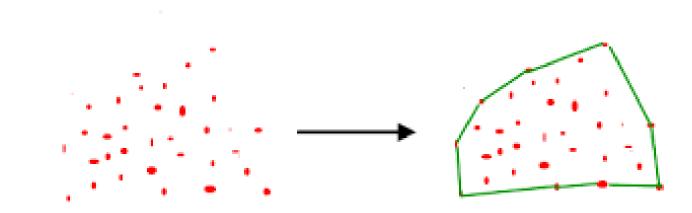
Step-by-step methodology

- 1. F1 and F2 measurements at 5 ms intervals
- 2. Removal of outliers, median scaling
- 3. Creation of empty grids with discretized dimensions
- 4. Local density calculations with field-of-view
- 5. Scale density measures
- 6. Convex hull at specified scaled density \rightarrow DV
- 7. Creation of heat maps \rightarrow Visual

Scaled density

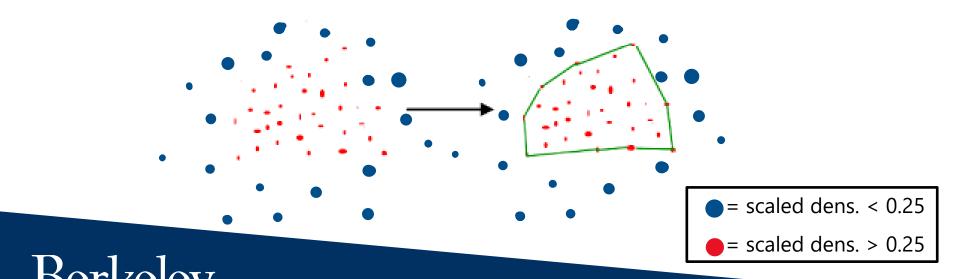
• All density measurements range from 0 to 1

$$density' = \frac{density}{\max(density)}$$



Step-by-step methodology

- 1. F1 and F2 measurements at 5 ms intervals
- 2. Removal of outliers, median scaling
- 3. Creation of empty grids with discretized dimensions
- 4. Local density calculations with field-of-view
- 5. Scale density measures
- 6. Convex hull area at specified scaled density \rightarrow DV
- 7. Creation of heat maps \rightarrow Visual

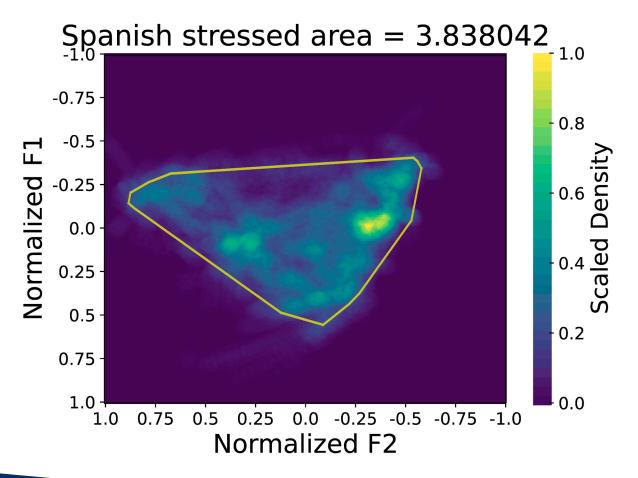


• Area of set of measurements enclosed by shape

- Area of set of measurements enclosed by shape
- Conditional on scaled local density of grid points

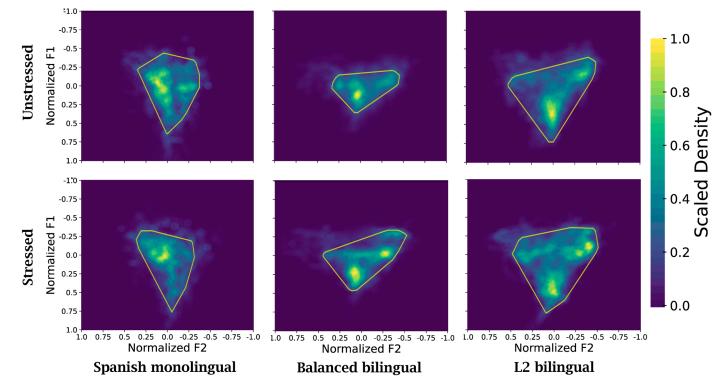
- Area of set of measurements enclosed by shape
- Conditional on local density of grid points
- Scaled density of 0.25 recommended by Story & Bunton

- Area of set of measurements enclosed by shape
- Conditional on local density of grid points
- Scaled density of 0.25 recommended by Story & Bunton
- Areas at scaled density thresholds of 0.1, 0.15, 0.2, 0.25, and 0.3 to demonstrate sensitivity
- Area in units of squared std dev

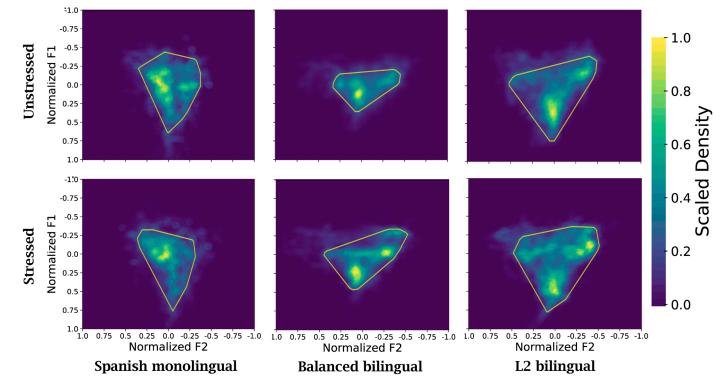


Step-by-step methodology

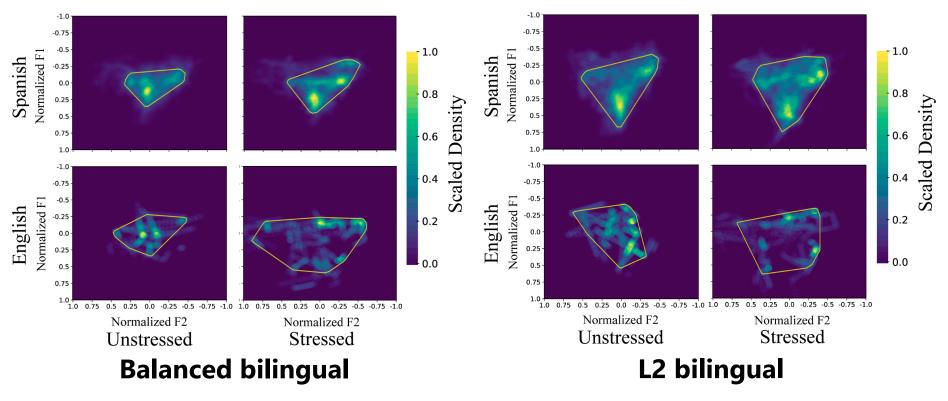
- 1. F1 and F2 measurements at 5 ms intervals
- 2. Removal of outliers, median scaling
- 3. Creation of empty grids with discretized dimensions
- 4. Local density calculations with field-of-view
- 5. Scale density measures
- 6. Convex hull area at specified scaled density \rightarrow DV
- 7. Creation of heat maps \rightarrow Visual



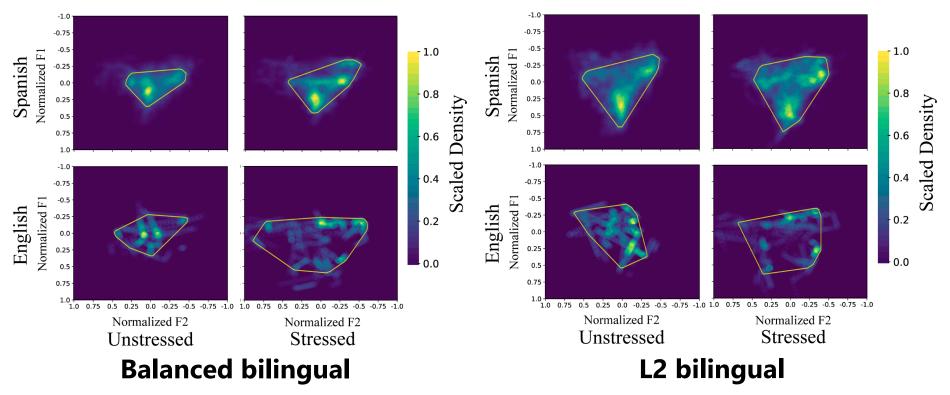
Heatmap (Visual)



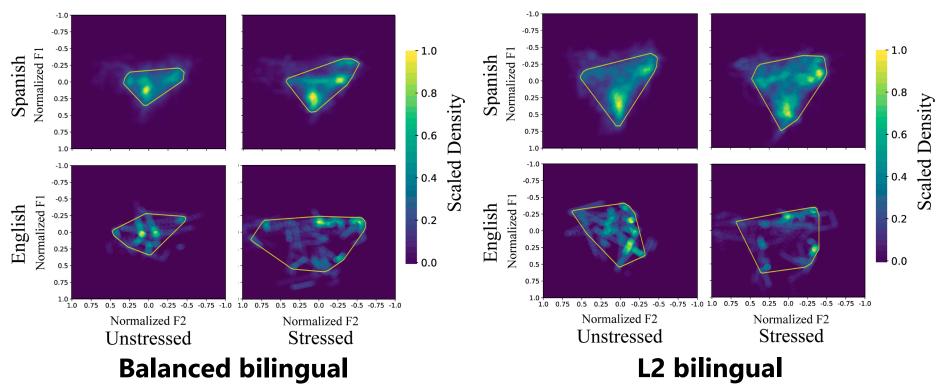
Only Spanish


Only Spanish

- Language dominance and stress are not significant
 - Impressionistically, L2 bilingual has larger Spanish VSA
 - Impressionistically, bilinguals show slight centralization



Only bilinguals


Only bilinguals

• Stress only significant in English

Only bilinguals

- Stress only significant in English
- Language dominance is not significant
 - Impressionistically, L2 bilingual has larger Spanish VSA

• Visual aid, more representative of dynamic vowel production

- Visual aid, more representative of dynamic vowel production
- Built-in capability for handling outliers

- Visual aid, more representative of dynamic vowel production
- Built-in capability for handling outliers
- Can be used to COMPLEMENT vowel-specific analyses (e.g., Spanish/Catalan mid vowels)

- Visual aid, more representative of dynamic vowel production
- Built-in capability for handling outliers
- Can be used to COMPLEMENT vowel-specific analyses (e.g., Spanish/Catalan mid vowels)
- Further analysis of scaled density grids (e.g., KL divergence)

- Visual aid, more representative of dynamic vowel production
- Built-in capability for handling outliers
- Can be used to COMPLEMENT vowel-specific analyses (e.g., Spanish/Catalan mid vowels)
- Further analysis of scaled density grids (e.g., KL divergence)
- Application to L2 suprasegmental acquisition (acoustic consequences of lexical stress)

Acknowledgments

- Ernesto Gutiérrez Topete (UC Berkeley)
- Justin Davidson (UC Berkeley)
- Keith Johnson (UC Berkeley)

Send me comments and questions!

annie_helms@berkeley.edu

References

- Birdsong, D., Gertken, L. M., & Amengual, M. (2012). Bilingual Language Profile: An Easy-to-Use Instrument to Assess Bilingualism. COERLL, University of Texas at Austin.
- Bradlow, A. R., Torretta, G. M., & Pisoni, D. B. (1996). Intelligibility of normal speech I: Global and fine grained acoustic phonetic talker characteristics. *Speech communication*, 20(34), 255–272.
- Elias, V., McKinnon, S., & Milla-Muñoz, A. (2017). The Effects of Code-Switching and Lexical Stress on Vowel Quality and Duration of Heritage Speakers of Spanish. *Languages* 2, 29.
- McCloy, D., Wright, R., & Souza, P. (2012). Modeling intrinsic intelligibility variation: Vowel space size and structure. *Proceedings of Meetings on Acoustics* 164ASA, 18(1), 060007.
- Menke, M. R., & Face, T. L. (2010). Second language Spanish vowel production: An acoustic analysis. *Studies in Hispanic and Lusophone Linguistics*, 3(1), 181-214.
- Ronquest, R. (2013). An acoustic examination of unstressed vowel reduction in Heritage Spanish. *Selected Proceedings of the 15th Hispanic Linguistics Symposium*, 157–171.
- Ronquest, R. (2016). Stylistic variation in Heritage Spanish vowel production. *Heritage Language Journal*, 13, 275–298.
- Story, B. H., & Bunton, K. (2017). Vowel space density as an indicator of speech performance. *JASA*, 141(5), EL458–EL464.

