Utilizing density-controlled vowel space area to examine the role of language dominance in the acquisition of Spanish and English vowel reduction patterns

Annie Helms
annie_helms@berkeley.edu

10th International Symposium on the Acquisition of Second Language Speech
April 20, 2022 – University of Barcelona
Goals

• Motivate and explain method of calculating vowel space area using formant trajectories and local densities
• Apply to acquisition of L2 phonetics and phonology
Vowel space

• Interspeaker variation
 – L1 clear speech, talker characteristics (Bradlow et al. 1996; McCloy et al. 2012)
 – Bilingual vowel reduction, language profile (Menke & Face 2010; Ronquest 2013)
Vowel space

• Interspeaker variation
 – L1 clear speech, talker characteristics (Bradlow et al. 1996; McCloy et al. 2012)
 – Bilingual vowel reduction, language profile (Menke & Face 2010; Ronquest 2013)

• Intraspaker variation
 – L1 clear speech, task type (Story & Bunton 2017)
 – Bilingual vowel reduction, task type (Ronquest 2016)
Vowel space

- **Interspeaker variation**
 - L1 clear speech, talker characteristics (Bradlow et al. 1996; McCloy et al. 2012)
 - Bilingual vowel reduction, language profile (Menke & Face 2010; Ronquest 2013)
 - L1/L2 vowel reduction, language dominance

- **Intraspeaker variation**
 - L1 clear speech, task type (Story & Bunton 2017)
 - Bilingual vowel reduction, task type (Ronquest 2016)
Vowel space

- Interspeaker variation
 - L1 clear speech, talker characteristics (Bradlow et al. 1996; McCloy et al. 2012)
 - Bilingual vowel reduction, language profile (Menke & Face 2010; Ronquest 2013)
 - L1/L2 vowel reduction, language dominance
- Intraspeaker variation
 - L1 clear speech, task type (Story & Bunton 2017)
 - Bilingual vowel reduction, task type (Ronquest 2016)
 - L1/L2 vowel reduction, task language
Vowel space

- **Interspeaker variation**
 - L1 clear speech, talker characteristics (Bradlow et al. 1996; McCloy et al. 2012)
 - Bilingual vowel reduction, language profile (Menke & Face 2010; Ronquest 2013)
 - **L1/L2 vowel reduction**, language dominance

- **Intraspeaker variation**
 - L1 clear speech, task type (Story & Bunton 2017)
 - Bilingual vowel reduction, task type (Ronquest 2016)
 - **L1/L2 vowel reduction**, task language
Vowel space

• Interspeaker variation
 – L1 clear speech, talker characteristics (Bradlow et al. 1996; McCloy et al. 2012)
 – Bilingual vowel reduction, language profile (Menke & Face 2010; Ronquest 2013)
 – L1/L2 vowel reduction, language dominance

• Intraspeaker variation
 – L1 clear speech, task type (Story & Bunton 2017)
 – Bilingual vowel reduction, task type (Ronquest 2016)
 – L1/L2 vowel reduction, task language
Heritage Spanish vowel reduction

- Centralization of individual vowels in unstressed syllables (Elias et al. 2017; Menke & Face 2010; Ronquest 2013)
Heritage Spanish vowel reduction

• Centralization of individual vowels in unstressed syllables (Elias et al. 2017; Menke & Face 2010; Ronquest 2013)
• Centralization of individual vowels after English code-switch (Elias et al. 2017)
Heritage Spanish vowel reduction

- Centralization of individual vowels in unstressed syllables (Elias et al. 2017; Menke & Face 2010; Ronquest 2013)
- Centralization of individual vowels after English code-switch (Elias et al. 2017)
- Centralization of individual vowels in less-monitored speech (Ronquest 2016)
Heritage Spanish vowel reduction

- Centralization of individual vowels in unstressed syllables (Elias et al. 2017; Menke & Face 2010; Ronquest 2013)
- Centralization of individual vowels after English code-switch (Elias et al. 2017)
- Centralization of individual vowels in less-monitored speech (Ronquest 2016)
- Decreased dispersion of vowels in less-monitored speech (Ronquest 2016)
Heritage Spanish vowel reduction

- Centralization of individual vowels in unstressed syllables (Elias et al. 2017; Menke & Face 2010; Ronquest 2013)
- Centralization of individual vowels after English code-switch (Elias et al. 2017)
- Centralization of individual vowels in less-monitored speech (Ronquest 2016)
- Decreased dispersion of vowels in less-monitored speech (Ronquest 2016)
- Potential cross-linguistic influence from English
Vowel reduction

• Methodological issues:
 – Impressionistic coding (Varela 1992)
 – Measurements taken from one point during vowel production (Elias et al. 2017; Menke & Face 2010; Ronquest 2013, 2016)
Vowel reduction

• Methodological issues:
 – Impressionistic coding (Varela 1992)
 – Measurements taken from one point during vowel production (Elias et al. 2017; Menke & Face 2010; Ronquest 2013, 2016)

• Solution (Story & Bunton 2017)
 – Use entire formant trajectory
 – Weight regions of vowel space based on frequency of occurrence
Vowel reduction

• Methodological issues:
 – Impressionistic coding (Varela 1992)
 – Measurements taken from one point during vowel production (Elias et al. 2017; Menke & Face 2010; Ronquest 2013, 2016)

• Solution (Story & Bunton 2017)
 – Use entire formant trajectory
 – Weight regions of vowel space based on frequency of occurrence

• Novel application to L1/L2 vowel reduction
 – Interspeaker comparison: language dominance
 – Intraspeaker comparison: language of task
Case study

- Corpora
 - DIMEx100 for Spanish monolingual speakers (Mexico City)
 - CBAS for Spanish-English bilinguals (California Bay Area)
Case study

• Corpora
 – DIMEx100 for Spanish monolingual speakers (Mexico City)
 – CBAS for Spanish-English bilinguals (California Bay Area)

• Language dominance
 – Bilingual Language Profile (Birdsong et al. 2012)
Case study

- DIMEx100 for Spanish monolingual speakers (Mexico City)
- CBAS for Spanish-English bilinguals (California Bay Area)

Language dominance
- Bilingual Language Profile (Birdsong et al. 2012)

![Diagram showing binned groups and dominance (BLP)]
Case study

- Corpora
 - DIMEx100 for Spanish monolingual speakers (Mexico City)
 - CBAS for Spanish-English bilinguals (California Bay Area)
- Language dominance
 - Bilingual Language Profile (Birdsong et al. 2012)
Case study

- **Corpora**
 - DIMEx100 for Spanish monolingual speakers (Mexico City)
 - CBAS for Spanish-English bilinguals (California Bay Area)
- **Language dominance**
 - Bilingual Language Profile (Birdsong et al. 2012)
- **Lexical stress**
Case study

- Corpora
 - DIMEx100 for Spanish monolingual speakers (Mexico City)
 - CBAS for Spanish-English bilinguals (California Bay Area)
- Language dominance
 - Bilingual Language Profile (Birdsong et al. 2012)
- Lexical stress
- Average vowel duration by speaker by language
Step-by-step methodology

1. F1 and F2 measurements at 5 ms intervals
2. Removal of outliers, median scaling
3. Creation of empty grids with discretized dimensions
4. Local density calculations with field-of-view
5. Scale density measures
6. Convex hull at specified scaled density → DV
7. Creation of heat maps → Visual
Step-by-step methodology

1. F1 and F2 measurements at 5 ms intervals
2. Removal of outliers, median scaling
3. Creation of empty grids with discretized dimensions
4. Local density calculations with field-of-view
5. Scale density measures
6. Convex hull at specified scaled density → DV
7. Creation of heat maps → Visual
Median scaling

\[F'_n = \frac{F_n - \overline{F}_n}{\overline{F}_n}, \quad \overline{F}_n = \text{median} \]
Median scaling

- $F'_n = \frac{F_n - \bar{F}_n}{\bar{F}_n}$, $\bar{F}_n = \text{median}$

- Transformed data:
 - Median = 0
 - Median dev. = 1
Step-by-step methodology

1. F1 and F2 measurements at 5 ms intervals
2. Removal of outliers, median scaling
3. Creation of empty grids with discretized dimensions
4. Local density calculations with field-of-view
5. Scale density measures
6. Convex hull at specified scaled density \rightarrow DV
7. Creation of heat maps \rightarrow Visual
Grid with discretized dimensions

- Simplified visual
Grid with discretized dimensions

- Simplified visual
Grid with discretized dimensions

- Simplified visual
- Python:
 - 2-dimensional array with tuples of coordinates
 - Increments of 0.01
 - shape (201, 201)
Step-by-step methodology

1. F1 and F2 measurements at 5 ms intervals
2. Removal of outliers, median scaling
3. Creation of empty grids with discretized dimensions
4. Local density calculations with field-of-view
5. Scale density measures
6. Convex hull at specified scaled density \(\rightarrow \) DV
7. Creation of heat maps \(\rightarrow \) Visual
Field-of-view

- Each coordinate pair in grid
- Number of F1/F2 measurements in field-of-view of radius 0.05
Field-of-view

- Each coordinate pair in grid
- Number of F1/F2 measurements in field-of-view of radius 0.05
- *Right:* local density of 3
Field-of-view

- Each coordinate pair in grid
- Number of F1/F2 measurements in field-of-view of radius 0.05
- Right: local density of 3
- Local density stored in each grid point
Field-of-view

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>9</td>
<td>23</td>
<td>32</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>28</td>
<td>30</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>21</td>
<td>20</td>
<td>25</td>
<td>27</td>
<td>38</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>26</td>
<td>27</td>
<td>11</td>
<td>25</td>
<td>38</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>33</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>8</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>16</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>20</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>32</td>
<td>9</td>
<td>5</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>16</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Step-by-step methodology

1. F1 and F2 measurements at 5 ms intervals
2. Removal of outliers, median scaling
3. Creation of empty grids with discretized dimensions
4. Local density calculations with field-of-view
5. Scale density measures
6. Convex hull at specified scaled density → DV
7. Creation of heat maps → Visual
Scaled density

- All density measurements range from 0 to 1

\[\text{density}^\prime = \frac{\text{density}}{\text{max}(\text{density})} \]
Step-by-step methodology

1. F1 and F2 measurements at 5 ms intervals
2. Removal of outliers, median scaling
3. Creation of empty grids with discretized dimensions
4. Local density calculations with field-of-view
5. Scale density measures
6. Convex hull area at specified scaled density → DV
7. Creation of heat maps → Visual
Convex hull area (DV)

- Area of set of measurements enclosed by shape
Convex hull area (DV)

- Area of set of measurements enclosed by shape
- Conditional on scaled local density of grid points

- = scaled dens. < 0.25
- = scaled dens. > 0.25
Convex hull area (DV)

- Area of set of measurements enclosed by shape
- Conditional on local density of grid points
- Scaled density of 0.25 recommended by Story & Bunton
Convex hull area (DV)

- Area of set of measurements enclosed by shape
- Conditional on local density of grid points
- Scaled density of 0.25 recommended by Story & Bunton
- Areas at scaled density thresholds of 0.1, 0.15, 0.2, 0.25, and 0.3 to demonstrate sensitivity
- Area in units of squared std dev
Step-by-step methodology

1. F1 and F2 measurements at 5 ms intervals
2. Removal of outliers, median scaling
3. Creation of empty grids with discretized dimensions
4. Local density calculations with field-of-view
5. Scale density measures
6. Convex hull area at specified scaled density \rightarrow DV
7. Creation of heat maps \rightarrow Visual
Heatmap (Visual)

Spanish stressed area = 3.838042
Only Spanish

Spanish monolingual Balanced bilingual L2 bilingual
• Language dominance and stress are not significant
 • Impressionistically, L2 bilingual has larger Spanish VSA
 • Impressionistically, bilinguals show slight centralization
Only bilinguals

Balanced bilingual

L2 bilingual
Only bilinguals

- Stress only significant in English
• Stress only significant in English
• Language dominance is not significant
 • Impressionistically, L2 bilingual has larger Spanish VSA
Discussion: methodology

- Visual aid, more representative of dynamic vowel production
Discussion: methodology

- Visual aid, more representative of dynamic vowel production
- Built-in capability for handling outliers
Discussion: methodology

• Visual aid, more representative of dynamic vowel production
• Built-in capability for handling outliers
• Can be used to COMPLEMENT vowel-specific analyses (e.g., Spanish/Catalan mid vowels)
Discussion: methodology

- Visual aid, more representative of dynamic vowel production
- Built-in capability for handling outliers
- Can be used to COMPLEMENT vowel-specific analyses (e.g., Spanish/Catalan mid vowels)
- Further analysis of scaled density grids (e.g., KL divergence)
Discussion: methodology

• Visual aid, more representative of dynamic vowel production
• Built-in capability for handling outliers
• Can be used to COMPLEMENT vowel-specific analyses (e.g., Spanish/Catalan mid vowels)
• Further analysis of scaled density grids (e.g., KL divergence)
• Application to L2 suprasegmental acquisition (acoustic consequences of lexical stress)
Acknowledgments

• Ernesto Gutiérrez Topete (UC Berkeley)
• Justin Davidson (UC Berkeley)
• Keith Johnson (UC Berkeley)

Send me comments and questions!

annie_helms@berkeley.edu
References

